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ABSTRACT: Let G be a connected graph with diameter diam (G)and d(X,Y)denotes the shortest
distance between any two distinct vertices X,y inG . Radio labeling (multi-level distance labeling or
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distance labeling) of G is a one-to-one mapping

f:V(G) = Z" {0} satisfyingd(X, y)+| f(X)— f(y)[>diam(G)+1 for allx,y eV (G). The
span of a labeling f is the maximum integer that f maps to a vertex of a graph G . The radio number of
G denoted by m (G) , is the lowest span over all radio labelings of the graph. In this paper, we establish the

radio number for the generalized Petersen graph P(n,3) whenn =6k +4.
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1. INTRODUCTION
A radio labeling (multi-level distance labeling) is an
assignment of label, denoted by integers, to the vertices of

graph. Let G =(V (G), E(G)) be a connected graph with a

vertex set V (G) and an edge set E(G). A radio labeling is

a function from the vertices of the graph to some subset of
non-negative integers. The task of radio labeling is to assign
to each station a non-negative smallest integer such that the
interference in the nearest channel should be minimized. In
1980 [3], Hale presented this channel assignment for the very
first time by relating it to the theory of graphs. Later in 2001,
Chartrand et al. [1] applied this idea for assignment of
channels to FM radio station. Liu and Zhu completely studied
the radio numbers for Paths and cycles in [8].

The radio number for the square (adding edges between
vertices of distance two apart) of paths was completely
determined by Liu and Xie [7] who also discussed the
problem for the square of a cycle [6]. M. T. Rahim and 1.
Tomescu in [9], discussed a helm graph which is obtained
from a wheel by attaching a vertex of degree one to each
vertex of the cycle of the wheel and determined its radio

number for everyn >3, m(H,)=13, rn(H,) =21 and
m(H,)=4n+2 for any n>5. They also proposed a
lower bound of rn (G) related to the length of a maximum

Hamiltonian path in the graph of distance of G. Lower

bound for the generalized gear graph J, _, which is obtained

tn?
from a wheel graph by introducing t vertices between every
pair of adjacent vertices on the cycle was found by M. T.
Rahim et al. in [10]. Radio number for different families of
graphs have been investigated in [11], [12], [13], [14], [15]
and the reference therein.

For a simple graph G, distance between any distinct pair of

vertices in G denoted by d(X,y) is the length of the

smallest path between them. The diameter ofG,
diam (G) =d, is the maximum shortest distance between

any two distinct vertices in G .
A radio labeling is a one-to-one mapping

f :V(G) - Z" U{0} satisfying the condition

| f(X)—f(y)[>diam(G)+1-d(x,Y)

for any pair of vertices X, Yy inG .

The largest number that f maps to a vertex of a graph is the
span of labeling f . Radio number of G is the minimum
span taken over all radio labelings of G and is denoted by

m(G).
In this paper, radio number of the graphs
P(n,3), N=06Kk +4 are determined. The main theorems
of this paper is:
Theorem 1.
For the generalized Petersen graphs,

P(n,3), n=6k +4and k =2s+1where s> 2.

2
m(P(n,3)) ZGKLSK%’.

Theorem 2.
For the generalized Petersen graphs,

P(n,3), N=6K+4 and K =25 wheres >3

2
m(P(n,3)) = 6k +329k +22 |

2. PRELIMINARIES
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A generalized Petersen graph, P(n,m);n >3 and

n-1
1<m< {TJ has a vertex set

V(G)={u,v,:i=12,..n}
and an edge set E(G) ={u,u,,,,V;Vi,,,,, UV, |with indices
taken modulo n}
Remark 1.[4]
The diameter of P(n,3)is
diam (P(n,3))=d =k +4,if n=6k +4
3. LOWER BOUND FOR P(n,3)
In this section, the lower bound for rn(P(n,3)),Where

Nn=6K+4 are determined. For this purpose, first examine
the maximum possible sum of the pairwise distance between
any three vertices of P(n,3) and use this maximum sum to

develop a minimum possible gap between the i"and

(i+2)™ a largest label. Using O for the smallest label and

taking the size of gap into account then provides a lower
bound for the span of any labeling.
Lemma 3.

Let P(n,3) be the family of generalized Petersen graphs,
n =6k +4.

(i) For each vertex U, on the outer cycle there is exactly one
vertex at a distance d , diameter of P(n, 3) .

(if) For each vertex V, on the inner cycle there is exactly one

vertex at a distance d , diameter of P(n, 3) .

Proof.

(i) We thatd (U, Uy, ;) =K+4=d.
Since N = 6K + 4, there are equal number of vertices on the
left half and right half of the cycle.

The path from U, to Uy, ,is of length K +4 as

show

Uy = Vaop1 = Vaapr = Voopn = o
Va7 Usar ™ Uz = Ugeya
(ii) d(V,,Vy,5)=k+4
Vi 2 Vamyn > Va1 Vi

Ugeir —> Ugyp > Ugy s > Vg

Lemma 4.
Let U,V,W be three vertices on the outer cycle of P(n,3),

where N = 6K + 4 then

d(u,v)+d(v,w)+d(w,u)<2d +2.
Proof.

By Lemma3,d(u,, U, ;) =k+4=d.
Case(1). When K is odd.
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dlu u —k+7and a path of length
3k+3? 3[2k—(%—1)]+1 92 P g

+7 _
T between U,, ., and U is

3[21«(%)71]4

u3k+3 - V3(k+l) - V3(k+2) - V3(k+3) o> V3[2k,(%,1)]

u
3[2k-(%—1)] 3[2k—(%—1)]+1

and

( J k+5
diu k-1 U | =——
3[2k—(7—1)]+l 2

because

u u
3[21«(%71)]& 3[2k—(%)—1]+1+1 3[2k—(%—1)]+1+1

\' \' =V, —>Uu
3[2k—(%—1)]+1+1+1.3 3[2k—(%—1)]+1+1+(%.3) ! !
Therefore,
d(u,,u +d| Uy.,,U +d|u ,u
( ! 3k+3) 3k+3 3[2k—(%—1)]+1 3[2k—(%—1)]+1 !
k+7 k+5
=K+4+—+——=2d+2
2
Case(2). When K is even.
dlu U _k+6
3k+37 3[2k—(%—1)]+1 )

k+6
and a path of length — between u,,,, and

" is

3[2k—(=—1)]+1
2

Ug3 = V3(k+1) - V3(k+2) - V3(k+3)

-V K
3[2k~(5-1)]

k+6
and d{u |, U [=——— because
3[2k—(5—1)]+1 2

3[2k—(g—l)]+l+l

u k u k
3[2k~(5-1)] 32k (514

_)

k u k
3[2k-(5-D+t 3[2k-(5-Dle1rL

=V, > U

3[2k—(§—1)]+1+1+1.3 o 3[2k—(g—l)]+1+1+(g.3)

Therefore,
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du )+dlu VoK +1— Vyy 0 —> Vaiy g >V
17 23k+3 3k+3? 3[2k—(%—1)]+l

3[2k7(%71)]

—u K —u K —>V K
3[2k—(=-1 3[2k—(=-1)]+1 3[2k—(=-1)]+1
k+6 k+6 [2k~(;-1)] [2k~(5-D+ [2k-( -1+
diu =k+4+ K+6
3[2k—(5—1)]+1 2 2 and d ( Vlj — 2 as
3[2k— 7—1 1
=2d +2 G
So, if U,V,W are three vertices on the outer cycle of v ., —>u ,  —>SUu >V
3[2k—(=-1)}+1 3[2k—(=-1)}+1 3[2k—(=-1)+1+1 3[2k—(=-1)]+1+1
P(n,3) then 2 2 2 2
-V —2..—>V =V,
d (u’ V) +d (V’ W) +d (W’ u) <2d+2. 3[2k-(5-1)]+1+1+1.3 3[2k-(5-1)]+1+1+5.3 !
Lemma 5. 2 2 2
If U,V,W are three vertices on the inner cycles of P(n,3), Therefore,
n =6k +4, then
d(u,v)+d(v,w)+d(w,u) <2d +2. ’ ’ g
V., ) + \" y V.
Proof. (V1 Vae3) A Vi 3[2k_(5_1)]+1 3[2k_(§_1)]+1 1
By Lemma 3,d(V,,V,.;) =k+4=d.
Case(1). When K is odd. =k+4+ k;6 k;6 2d +2
k+7
dl VossV. = and a path of length - _ _ _
32k~ 2 Thus if U,V,W are three vertices on the inner cycles
+7 _ P(n,3) then
T e Vo AV ety d (u,v) +d (v, W) +d (w,u) < 2d +2.
Lemma 6.
V. —V —V A —> . .
Skt 3(k+2) 3(k+3) 3[2k—(%—1)] Let U,V,W be three vertices of P(n,3), n=6k +4 with
two vertices on the outer and one vertex on the inner cycle
U3 k-1 —Uu k-1 -V k-1 then
[2k—(==-1)] 3[2k~( -1 3[2k~(5 -1
d(u,v)+d(v,w)+d(w,u) <2d.
k+5 Proof
and d V32k K1) 1’V1 - 2 % d =k+4=d
(2K~ By Lemma3,d(U;, Uy ,,) =k+4=d.

Vv oo, >0 U >V For each vertex V, on the inner cycle there is only one
3[2k- (7-1)] +1 32k~ (f-1)1+1 3[2k- (7_1)]+1+1 3[2k—(7—1)]+1+1

vertex Uy, ,, on the outer cycle ata distance d —1.

-V —>.—V =V
3[2k—(%—1)]+1+1+1.3 3[2k—(%—1)]+1+1+%.3 ! ie.d(v,Uy,5)=d-1,
Therefore, Therefore,
A0 Vaa) 0 ¥ [ Sk [zk(kll)]+l} +d [VS[Zk(kzll)]ﬂlvlJ d(Uy, Uy 5) +d Ug,5 V) +d (VU )=d +(d -1)+1=2d
k +7 k+5 Thus if U,V,W are three vertices with two vertices on the

outer and one vertex on the inner cycle of P(n, 3), then
d(u,v)+d(v,w)+d(w,u) <2d.

=k+4+ +——=2d+2
2 2

Case(2). When K is even. We use above mentioned maximum possible sum of the

k+6 pairwise distance between three vertices on the outer cycle

d V3k+3’V3[2k_(3_1)]+1 = and a path of length  ang on the inner cycle of P(n,3) together with the radio
2

condition to determine the minimum distance between every

. other label (arranged in increasing order) in a radio labelling
between V,, .. andV K is
2k—(5)-11+1 of P(n,3).

Lemma 7.
Let f be radio labeling forP(n,3), n=6k+4,

wherek =2s+1,s>2.
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(i) Suppose {X; :1<1 < n} is the set of vertices on the outer
cycle with labels
FO)<f(x)<f(x)<.<f(x.,<f(X),

k+5

Then f(x.,)— f(x)=f +

|+l >

(ii) Suppose {Y, :1<i<n} is the set of vertices on the
inner cycle with labels

fOy) < F(y,) < Fys) << f(y, )< f(y,).

k+5
Then f(Yi+2)_ f (Yi) = f"" flj—l 2 T
Proof.
(i) Let {X, X, X.,} be any set of three vertices on the

outer cycle of P(n,3) withn =6k +4. Applying the radio

condition to each pair in the vertex set {X;, X, X, .,} and
takes the sum of three inequalities.

| f (X|+1) f (X ) |> diam (G) d (X|+l’ |) +1
| f (Xi+2) —f (X|+1) |> diam (G) —d (X|+2’ |+1) +1
| (%)~ F (%) [2diam (G) —d (X5, X) +1

ISSN 1013-5316; CODEN: SINTE 8
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and{Vv,,V,,V,,
P(n,3). We order the vertices of P(n,3) on the outer
cycle by X, Xy, Xg,..., X, with f(x)< f(x,,) and the
vertices on the Yir Yor Yaree Y
with f(y;) < F (Vi)

writed = diam(P(n,3)) .

We haved =k +4. Fori=12,3,..n—1, set
d; =d(x,x.,) and f; = (x,,) — F(x).

Then f, >d+1—d, foralli.

By Lemma 7(i) , the span of a distance labeling of P(n,3)
for the vertices on the outer cycle is

fx) =31, -

.,V }. Let f be a distance labeling for

inner cycle by

fi+f+f6+.+f ,+f

=[f(x_{2) - (x {0) [+ [ f (x_{3})-F (x {2 ]+
[F(x_{n-1)-f (x_{n-23)]+[f (x_{n})-F (x_{n-1)]

| £ 06— F OO 1 F0) = F O [+ £ ()= FO0) 2 =(F_{L+F _{2)+(F_{3}+ _{4})+(f_{5}+f_{6})+

adiam (G) —d (X, X ) —d (X ,,, X ) —d (X, X ) +3
We drop the absolute sign because
f(x)< f(x,,)< f(X,,) and using Lemma 4 to obtain:

20 (x.,)— f(x)]=3diam(G) —(2d +2) +3=d +1
fitfia= ()= ) 2502,

(i) Now let {Y;, ¥i,1: ¥i,o} be any set of three vertices on

the inner cycles of a graph P(n,3) withn =6k + 4.

Applying radio condition to each pair in the above manner
and using Lemma 5, we get

2 (y..,)— f(y,)]=3diam(G) - (2d +2) +3=d +1

, d+1 k+5
f + f|+1 [f(yi+2) f(y|)]— 2 '

The above Lemma makes it possmle to calculate the
minimum possible span of a radio labeling of P(n,3) .
Theorem 8.
For the generalized Petersen graph P(n,3), n=6k +4,

k=2s+1s>2

2
m(P(n,3)) > 6k~ +33k +19-

Proof.
A generalized Petersen graph has 2N vertices. First divide

the set of vertices into two subsets {U;,U,,U,,...,U }

+(f_{n-3}+f _{n-23)+f_{n-1)

n-2

2
= Z ( f2i—1 + f2i ) + fn—l

i=1
S n—Z(k +5j+ L

2 2
Thus,

2
f(xn)23k +126k+7
Applying Lemma 6 and Lemma 7(ii) to the vertices
X,_1» X, Y, such that
F(x) < F(x) < (v,

then

k+7

| f(yl) f(Xn 1) |>T

k+7
f(yl) 2 f(X 1)+T
3k? +17k +12
f(yl)Zf

By Lemma7(ii), the span of a distance labeling f of
P(n,3) for the vertices on the inner cycles is given by
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n-1
Fly) = ()= ) = (f )+ (Ft £t (FLa £)+ £
i1

n-2
2

= Z ( f2,i—l + f2’i )+ fn’—l
i-1

5 n—2(k+5]+1
2 2

Thus,
2
F(y,) - f(y) > K HIOKAT
6k’ +33k +19
f >—
(v,) >
Lemma 9.

Let f be radio labeling for a generalized Petersen graphs,
P(n,3),n=6k +4,wherek =2s,5>3.

(i) Suppose {X; :1<i<n} is the set of vertices on the
outer cycle with label

F(x) < F(X) << F(X )< F(X),
then
FO)= F)= T, ()= £, s 2p 2

(ii) Suppose {Y; :1<i < n} is the set of vertices on the
inner cycles with label

FOL) < T0¥) <o < T (Yoa) < TV,
\k+6+1 _k+6

th f : —f L) = f.’+ fAI >
en (y|+2) (y|) i i+l 2 2 2

Proof.
Proof is similar to Lemma 7.
Theorem 10.

For the generalized Petersen graphs, P(n,3), n=6k +4
and K =2S where $>3

2
m(P(n,3)) > 6k +39k + 22 .

Proof.
A generalized Petersen graph has 2n vertices. First divide
the set of vertices into two subsets

Uy, Uy, Ug,...,U and V,,V,, Vs, ...,V . Let f be a distance
labeling for P(n,3). We order the vertices of P(n,3) on
the outer cycle by X, X,, Xg,..., X, with (%)< f(x,)
and the vertices on the inner cycles by VY;,VY,,Ys, ..., ¥,
with F(y;) < (Y1)

Denote d = diam(P(n,3)) . Thend =k +4.

ISSN 1013-5316; CODEN: SINTE 8
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Fori=1,2,3,..n—-1,set d, =d (X, %.,)

and fi =106 —T(x)

Then f,>d+1-d, foralli.

By Lemma9(i), the span of a distance labeling f of
P(n,3) for the vertices on the outer cycle is:

n-1
f(x,) =Z f=f+f,+f+..+f +f

=[f(x_{2)-f (x_{0) |+ [f (x &) -F (x {2} ]+ . +
[F(x_{n-1)-f(x_{n-23) |+ [f (x_{n})-f (x_{n-1)]
=(F _{1}+f _{Z)+(f _{3}+f _{4})+(f _{5}+f _{6})
+. +(f_{n-3}+f _{n-2})+f _{n-1

n-2
2

= Z ( f2i—l + f2i ) + fn—l
i=1

2 2
Thus,
2
f(xn)23k +19k +8
Applying Lemma 6 and Lemma 9(ii) to the

vertices X, _;, X, ¥; such that

FOG) < T06) < f(v),

then
k+8
| £(y)—f(X.0) lZT
k+8
f(y)= f(Xn—1)+T_1
k? + 20k +14

3
f >
(v1) 5

By Lemma9(ii), the span of distance labeling of P(n,3)
for the vertices on the inner cycles is

n-1

F(y.)—f(y) :Z fi=(f/+£)+ (K + )+ +(f+ )+

i=1

T
N

M|

= : (f2'i—l + fz'i)"' fn'—l

—2(k+6j
Sl (LS
2 2

S 1]
N

Therefore,
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k?+19k +8
2

f(y)>6k2+39k+22

F(y)— F ()22

Ordinary labeling and radio labeling for P(34,3).

4. AN UPPER BOUND FOR P(n,3)
To complete the proof of Theorem 1 and Theorem 2 it
remains to find the radio labeling for P(Nn,3) with span

equal to the desired number.
The labeling is generated by pair of three sequences,
the distance gap sequences

D=(d,,d,,d,,....,d ;)

ISSN 1013-5316; CODEN: SINTE 8
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D' =(d/,d},d,...d )

the color gap sequences
F=(f,f, f £ )
Fr=(f),f),f,., 1)

and the vertex gap sequences T and T’
T=(,t,t,....t )
T =(t,t,t,...,t )

Case 1. When K is odd.

The distance gap sequences are given by:

k+4, if i is odd;

k+7

, if i is even.

Fori=123,..,n-1,d =d(y,,V,,) and

, k+5
d =d(Xn,yl)=T.
The color gap sequences F and F' are given by:
1 if 1 is odd;
f=1'=
k+3 ., ..
——, if i is even.
, K+5
f'= f(yl)—f(Xn)=T-
The vertex gap sequences are:
3k +1, if 1 is odd;
t; :ti' =
3k+3 ., ..
> if 1 is even.

Where t; denotes number of vertices between X; and X,
on the outer cycle and t| denotes number of vertices between

Yy, and Y, on the inner cycles.
Let 7z,7":{,2,3,...n} —>{1,2,3,...,.n} be defined by

7()=1
and

1 if k =3(mod4)
7'(1) =

6k +2, if k=1(mod4).

(i +1) = z(i) +t +1(modn)
2'(i+1) = /(i) +t +1(modn)
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Assuming X, =U_ ) and Y, =V_, for i=123,....N.

is an ordering of the vertices of

7(i)
Then X, X,, Xg,..., X,
P(n,3) on the outer cycle and

Y1, Yor Yy .o ¥, is an ordering of the vertices of P(n,3) on
the inner cycles.

Assume f(x)=0,and f(X,,)=f(x)+ ..

Thenfor 1=1,2,3,...,3k+2

2(2i-1) = (i-DEKk+D)+(-1) (&;3} 2(i 1) +1(modn)

3k+3

2(21) = (3K +1) + (i —1)(

Case (i): When k = 3(mod4) . Then for
1=1,2,3,..,3k+2,
7'(21-1) = z(21-1),

7'(2i) = 7z(20).
Case (ii): Whenk =1(mod4). Then for
1=1,2,3,..,3k+2,

7'(2i 1) = 6k + 2+ 7(2i 1),

7'(2i) = 6k + 2+ 7(2i).

We will show that each of the sequences given above, the
corresponding 77,7z’ are permutations.

For this it is sufficient to show that 77 is a permutation.

Note that g.c.d(n,k)=1 and3k+3=-3k—-1(modn).
Thus,

(3k+3)(i—1") = (3k +1)(i—i") #0(modn) when 0<i-i’ <g.
This implies that 77(2i) = 7z(2i") or

(21 =1) # (21" 1) fori =i’.

However, if 7(21) = 7z(2i' —1) , then we get

3.(3k +3)(i—i") = —(3k + 4)(modn)

3.(3k +1)(i"—i) = (3k + 2)(modn)

6.(3k +1)(i"—i) = (6k +4)(modn)

6.(3k +1)(i —i") =0(modn)

Since g.C.d.(3k +1, n) =2, it follows that

i —i"=0(modn) . But this is not possible because

0<i—i’<g=3k+2.

Thus, 7 is a permutation consequently 7" is also.
The span of f isequal to:

ISSN 1013-5316; CODEN: SINTE 8

j+(2i —1) +1(modn).

f_{U+f_{20+F_{3}+ ... f_{n-2}+f _{n-1}+f+
fo{+f {2} +f {3}+ .. . f_{n-2}+f"_{n-1}
:[(f_{1}+f_{3}+f_{5}+, v+ 4N —1})]+
[(F_{2}+f_{a}+f_{6}+ .., +f _{n-2})]+f"
+[(f " +f {3 +f (B4, ..+ '_{n—l})]+
[(F{2}+F_{a}+F_{6}+, ... +F _{n-2})]

:D(l)+n_2 k+3 +k+5+2+ﬂ(1)+n—2 k+3
2 2 2 2 2 2 2
_ 6k*+33k+19

2
Case 2. When K is even.

Case (i). Fork =0(mod4), k =4s wheres> 2.
The distance gap sequences D and D’ are given by:

k+4, if i is odd;
di: k e . .

—+3, if 1 is even.

2

k+4, if i1 is odd;
d' =

k e .

§+4’ if i is even.

Where d/=d(y,,V:,,) fori=12,3,...,n-1and
d':d(xn,yl)=g+2.

The color gap sequences F and F' are given by:

1, if 1 is odd;
fi = fi': k e . -
—+2, if i is even.
2
f’:E+3.
2
The vertex gap sequences are:
3k +1, if 1 is odd;
t = % if i=2(mod4);
%+2, if 1=0(mod4).
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3k+1, if i is odd;
t/ = % if i=2(mod4);
%+3, if 1=0(mod4).

where t; and t/ denotes the number of vertices on outer
cycle and inner cycles.

Let 6,6 :{1,2,3,..,.n}—>{,23,....,n} be defined
by(1)=1 and &'()=1

6(i+1) =6(i) +t, +1(modn)

g'(i+1) =6'(i) +t/ +1(modn)

Assuming X, =Uy;, and Y, =V, for i=1,23,...,n.

Then X, X,, Xg,..., X

o X,
P(n,3) on the outer cycle and

Vi Yas Yau--s ¥, is an ordering of the vertices of P(n,3) on
the inner cycles.

Let f(x)=0, f(x

is an ordering of the vertices of

)=f0x)+f.

Then for | :1,2,3,...,%+1,

i+1

0(4i-2) = (2i-1)(3K +1) + (2 -2) (%} (6i —5) +1(modn)
0(4i—-1) = (2 ~D)3k +1) + (2i -1)%) +(6i—4)+1(modn)

0(4i) = 2i(3k +1) + (2i 1) (%} + (6i —3) +1(modn)

and

O(4i +1) = 2i(3k +1) + 2i (%)m +1(modn), for i=0,1,2,... .

0'(4i-2) = (2i-1)(3k+1)+ (2i-2) %]mi —6)+1(modn)
—0(4i-2)+i-1

0'(4i 1) = (2i ~1)(3k +1) +(2i 1) (%} (7i-5)+1(modn)
—04i-1)+i-1

0'(4i) = 2i(3k +1) + (2i —1) (%) +(7i—4) +1(modn)

— O(4i)+i-1

and

0'(4i+1) = 2i(3K +1) + 2i (%) +7i +1(modn)

ISSN 1013-5316; CODEN: SINTE 8
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=0(4i+1) +i, for i=0,1, 2,...,%.
Case (ii):
For k=2(mod4),i.e k =4s+2 where s>1
The distance gap sequences are given by:

k+4, if 1 is odd;
d =4k .

—+3, if i is even.

2

k+4, if 1 is odd;
d'= g+3, if 1=2(mod4);

k -

E+4, if i=0(mod4).

Fori=12,3,..,n-1,d'=d(y,,V:,) and
d'=d(0,9) =5+2
Kk

d"=d (X2 Xe,3) = E+ 4.
The color gap sequences F and F' are given by:
1, if 1 is odd;
fi=f'=
k e
E+2’ if 1 is even.

= ()= f(x) =5 +3

The vertex gap sequences are:

3k
3k+1, if 1 is odd;
t = % if 1=2(mod4);
%+2, if 1=0(mod4).
3k
t,.,=—+2.
3k+2 2
3k+1, if 1 is odd;
t' = % if 1=2(mod4);
%+3, if 1=0(mod4).

where t; and t/ denotes the number of vertices on the outer
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cycle and inner cycle respectively. Since K is even, so

Let §,¢":{1.2.3,...}>{1,2,3,...n} be defined by g4 (3k+4,n)=2and9k +8=3k+4(modn). Thus,
() =1and ¢'(1)=2
#(i-+1) = (i) +t + I(modn) Ok +8)(i—1") =Bk +4)(i—1") #0(modn)

whenO<i—i'<E:%+1.
4 2

#(i+1) = /(i) +t/ +1(mod n)

_ K 42 I (3K +4)(i —i") = 0(modn) theni—i’ = 0(mod2) . it
Thenfor 1 =1,2,..., 7 2

means that n divides i—i' which is a contradiction to
H(4i—2) = 0(4i—2) 2

} ) thefactthati—i'<D.
o(41-1) =6(4i-1) 4

This implies that @(41) = @(41") fori =#i".

P(4i) = 0(4i) o _ : 3k
) Similarly, it can be easily show that for I =1,2,...,7+1
andfor 1 =0,1,2,...,———, .,
4 and 1 =1,
#(4i+1) = 6(4i+1). O(4i—2)=60(41'-2)
. 3k+6 6k+4 ] )
Now, for I'= 2 T g 0(4i-1) = 6(4i'-1)

And  O(4i+1) # O(4i' +1), fori =0,1, 2%

. 3k .
#(4i-2)= P} +3+0(4i-2) However, if 6(4i) =0(4i'—1) then we have
(4i—1) = %+3+9(4i _) 9k +8)(i —i") =—(3k +2)(modn)

(3K +4)(i’ —i) = (3k +2)(modn)

3k .
P(4i) = EY +3+6(4) 2(3k +4)(i'—i) = 0(modn)
. 3k+2 6k
and fori = 4* e 2(3k +4)(i' i) = 0.2(modn)
Since
3k .
pAi+1) =—-+3+0(4i+1). gcd.(2(3k+4),n) = 2thereforei’ i = O(modg) it
3k

i = — n ., . n
Then for 1=1,2,3,..., > +1 follows thatE <i'—i< 7 This is not possible.
¢'(4i _2) _ 0’(4i _2) 41 The remaining cases shown are on the similar way. Thus &

) . is a permutation and consequently @', and @' are also
#(4i-1)=0'4i-1)+1 perm quenty &', ¢ and ¢
permutations
The span of f isequal to

and f_{U+f_{2}+f_{3}+ ... f_{n-2}+f _{n-1}+f'+
fori=0,1,2,...,%, i+ =0@i+n+1 AR {3  F {n-2)+f_{n -1

We will show that each of the sequence given above the
corresponding @, €', ¢ and ¢’ are permutations. For this it

¢ (4i) = 0'(4i) +1

is sufficient to show that @ is a permutation.
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{n-2})]
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B+f_{3}+F_{5}+, .., +f _{n-1})]
f_{6}+ ..., +f_{n —2})]

j+2(1)+

n-2
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Ordinary labeling and radio labeling for P(40, 3)
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